Заголовок:
Комментарий:
Версия для копирования в MS Word
PDF-версии: горизонтальная · вертикальная · крупный шрифт · с большим полем
РЕШУ ЦТ — математика
Вариант № 17113
1.  
i

Ука­жи­те но­ме­ра пря­мо­уголь­ни­ков, изоб­ра­жен­ных на ри­сун­ках 1−5, при вра­ще­нии ко­то­рых во­круг сто­ро­ны AB по­лу­ча­ет­ся ци­линдр, осе­вым се­че­ни­ем ко­то­ро­го яв­ля­ет­ся квад­рат.

1)

2)

3)

4)

5)

1) 3, 4
2) 1, 5
3) 2, 5
4) 1, 4
5) 1, 3, 4
2.  
i

Ука­жи­те вер­ное ра­вен­ство:

1)  ло­га­рифм по ос­но­ва­нию 7 49=7
2) 3 в сте­пе­ни левая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию 6 3 пра­вая круг­лая скоб­ка =6
3)  ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 26 пра­вая круг­лая скоб­ка 26=0
4)  ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 34 пра­вая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 34 конец дроби = минус 1
5)  ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 83 пра­вая круг­лая скоб­ка 83=83
3.  
i

Ариф­ме­ти­че­ская про­грес­сия (an) за­да­на фор­му­лой n-го члена an  =  2n + 5. Най­ди­те раз­ность этой про­грес­сии.

1) 7
2) −2
3) 2
4) −3
5) 3
4.  
i

Ука­жи­те номер ри­сун­ка, на ко­то­ром изоб­ра­же­ны фи­гу­ры, сим­мет­рич­ные от­но­си­тель­но точки O.

1)

2)

3)

4)

5)

1) 1
2) 2
3) 3
4) 4
5) 5
5.  
i

Одно число мень­ше дру­го­го на 48, что со­став­ля­ет 12% боль­ше­го числа. Най­ди­те мень­шее число.

1) 450
2) 448
3) 390
4) 352
5) 800
6.  
i

Ука­жи­те номер ри­сун­ка, на ко­то­ром по­ка­за­но мно­же­ство ре­ше­ний си­сте­мы не­ра­венств  си­сте­ма вы­ра­же­ний x\leqslant минус 1,8,1 минус 2x мень­ше 7. конец си­сте­мы .

1)  

2)  

3)  

4)  

5)  

1) 1
2) 2
3) 3
4) 4
5) 5
7.  
i

Най­ди­те пло­щадь фи­гу­ры, изоб­ра­жен­ной на ри­сун­ке.

1) 40 см2
2) 53 см2
3) 53,5 см2
4) 54 см2
5) 81 см2
8.  
i

Среди дан­ных утвер­жде­ний ука­жи­те номер вер­но­го.

1) Число 451 крат­но числу 5.
2) Число 9 крат­но числу 35.
3) Число 2 крат­но числу 14.
4) Число 116 крат­но числу 1.
5) Число 43 крат­но числу 0.
9.  
i

Одна из сто­рон пря­мо­уголь­ни­ка на 3 см длин­нее дру­гой, а его пло­щадь равна 88 см2. Урав­не­ние, одним из кор­ней ко­то­ро­го яв­ля­ет­ся длина мень­шей сто­ро­ны пря­мо­уголь­ни­ка, имеет вид:

1) x в квад­ра­те минус 3x минус 88=0
2) x в квад­ра­те плюс 88x минус 3=0
3) x в квад­ра­те минус 88x плюс 3=0
4) x в квад­ра­те плюс 3x плюс 88=0
5) x в квад­ра­те плюс 3x минус 88=0
10.  
i

Точки A(−4; 1) и B(3 ;3)  — вер­ши­ны квад­ра­та ABCD. Пе­ри­метр квад­ра­та равен:

1) 4 ко­рень из: на­ча­ло ар­гу­мен­та: 53 конец ар­гу­мен­та
2) 4 ко­рень из: на­ча­ло ар­гу­мен­та: 17 конец ар­гу­мен­та
3) 22
4) 2 ко­рень из: на­ча­ло ар­гу­мен­та: 53 конец ар­гу­мен­та
5) 27
11.  
i

Упро­сти­те вы­ра­же­ние  дробь: чис­ли­тель: 11 ко­рень из: на­ча­ло ар­гу­мен­та: 11 конец ар­гу­мен­та плюс 3 ко­рень из 3 , зна­ме­на­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 11 конец ар­гу­мен­та плюс ко­рень из 3 конец дроби минус ко­рень из: на­ча­ло ар­гу­мен­та: 33 конец ар­гу­мен­та плюс дробь: чис­ли­тель: 16 ко­рень из 3 , зна­ме­на­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 11 конец ар­гу­мен­та минус ко­рень из 3 конец дроби

1) 20
2)  дробь: чис­ли­тель: 3, зна­ме­на­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 11 конец ар­гу­мен­та минус ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та конец дроби
3)  дробь: чис­ли­тель: 1, зна­ме­на­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 11 конец ар­гу­мен­та плюс ко­рень из 3 конец дроби
4) 14
5)  ко­рень из: на­ча­ло ар­гу­мен­та: 33 конец ар­гу­мен­та
12.  
i

Ука­жи­те номер ри­сун­ка, на ко­то­ром пред­став­лен эскиз гра­фи­ка функ­ции y  =  1 − (x − 3)2.

1)

2)

3)

4)

5)

1) 1
2) 2
3) 3
4) 4
5) 5
13.  
i

Най­ди­те длину сред­ней линии пря­мо­уголь­ной тра­пе­ции с ост­рым углом 60°, у ко­то­рой боль­шая бо­ко­вая сто­ро­на и боль­шее ос­но­ва­ние равны 2.

1) 1,5
2)  ко­рень из 3
3) 2 ко­рень из 3
4) 3
5) 1
14.  
i

Соб­ствен­ная ско­рость ка­те­ра в 4 раза боль­ше ско­ро­сти те­че­ния реки. Рас­сто­я­ние по реке от пунк­та A до пунк­та B плот про­плыл за время t1, а катер  — за время t2. Тогда верна фор­му­ла:

1) t_1=5t_2
2) t_1=4t_2
3) t_1=4,5t_2
4) t_1=5,5t_2
5) t_1=6t_2
15.  
i

Ко­рень урав­не­ния  ко­рень из: на­ча­ло ар­гу­мен­та: 22 конец ар­гу­мен­та умно­жить на x= дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 11 в сте­пе­ни 5 умно­жить на 44 конец ар­гу­мен­та , зна­ме­на­тель: ко­рень 3 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 22 конец ар­гу­мен­та конец дроби равен:

1) 242 умно­жить на ко­рень из 2
2) 121 умно­жить на ко­рень 6 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 22 конец ар­гу­мен­та
3) 121 умно­жить на ко­рень 3 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 242 конец ар­гу­мен­та
4) 4 умно­жить на ко­рень 3 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 44 конец ар­гу­мен­та
5) 22 умно­жить на ко­рень 3 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 22 конец ар­гу­мен­та
16.  
i

ABCDA1B1C1D1  — пря­мо­уголь­ный па­рал­ле­ле­пи­пед такой, что AB = 16, AD = 2. Через се­ре­ди­ны ребер AA1 и BB1 про­ве­де­на плос­кость (см.рис.), со­став­ля­ю­щая угол 60° с плос­ко­стью ос­но­ва­ния ABCD. Най­ди­те пло­щадь се­че­ния па­рал­ле­ле­пи­пе­да этой плос­ко­стью.

1) 32 ко­рень из 2
2) 32
3) 32 ко­рень из 3
4) 16
5) 64
17.  
i

Через вер­ши­ну A пря­мо­уголь­но­го тре­уголь­ни­ка ABC (∠C  =  90°) про­ве­ден пер­пен­ди­ку­ляр AK к его плос­ко­сти. Най­ди­те рас­сто­я­ние от точки K до пря­мой BC, если AK  =  4, AB  =  9, BC  =   ко­рень из: на­ча­ло ар­гу­мен­та: 33 конец ар­гу­мен­та .

1) 13
2) 7
3) 4 ко­рень из 3
4)  ко­рень из: на­ча­ло ар­гу­мен­та: 97 конец ар­гу­мен­та
5) 8
18.  
i

Наи­мень­шее целое ре­ше­ние не­ра­вен­ства \lg левая круг­лая скоб­ка x в квад­ра­те плюс 2x минус 8 пра­вая круг­лая скоб­ка минус \lg левая круг­лая скоб­ка x плюс 4 пра­вая круг­лая скоб­ка \leqslant\lg3 равно:

1) −5
2) −4
3) 2
4) 3
5) 5
19.  
i

Для по­крас­ки стен общей пло­ща­дью 175 м2 пла­ни­ру­ет­ся за­куп­ка крас­ки. Объем и сто­и­мость банок с крас­кой при­ве­де­ны в таб­ли­це.

 

Объем банки

(в лит­рах)

Сто­и­мость банки с крас­кой

(в руб­лях)

2,575 000
10270 000

 

Какую ми­ни­маль­ную сумму (в руб­лях) по­тра­тят на по­куп­ку не­об­хо­ди­мо­го ко­ли­че­ства крас­ки, если ее рас­ход со­став­ля­ет 0,2 л/м2?

20.  
i

Най­ди­те сумму кор­ней (ко­рень, если он един­ствен­ный) урав­не­ния 2x умно­жить на ко­рень из: на­ча­ло ар­гу­мен­та: x плюс 30 конец ар­гу­мен­та =x в квад­ра­те плюс x плюс 30.

21.  
i

Сумма кор­ней (или ко­рень, если он один) урав­не­ния 2 в сте­пе­ни левая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию 5 x пра­вая круг­лая скоб­ка =136 минус 16 умно­жить на x в сте­пе­ни левая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию 5 2 пра­вая круг­лая скоб­ка равна ...

22.  
i

Пусть (x1; y1), (x2; y2)  — ре­ше­ния си­сте­мы урав­не­ний  си­сте­ма вы­ра­же­ний x в квад­ра­те плюс 3x=30 плюс 5y,3x минус 5y=5. конец си­сте­мы .

Най­ди­те зна­че­ние вы­ра­же­ния x_1y_2 плюс x_2y_1.

23.  
i

Най­ди­те наи­боль­шее целое ре­ше­ние не­ра­вен­ства 2 в сте­пе­ни левая круг­лая скоб­ка 3x минус 23 пра­вая круг­лая скоб­ка умно­жить на 5 в сте­пе­ни левая круг­лая скоб­ка x минус 3 пра­вая круг­лая скоб­ка боль­ше 10 в сте­пе­ни левая круг­лая скоб­ка 2x минус 13 пра­вая круг­лая скоб­ка .

24.  
i

Най­ди­те сумму целых ре­ше­ний не­ра­вен­ства  дробь: чис­ли­тель: левая круг­лая скоб­ка x в квад­ра­те плюс 7x плюс 10 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x минус 4 пра­вая круг­лая скоб­ка в квад­ра­те , зна­ме­на­тель: 4 минус x в квад­ра­те конец дроби \geqslant0.

25.  
i

Ре­ши­те урав­не­ние x в квад­ра­те минус 7x плюс 10= дробь: чис­ли­тель: 18, зна­ме­на­тель: x в квад­ра­те минус 5x плюс 4 конец дроби и най­ди­те сумму его кор­ней.

26.  
i

Най­ди­те зна­че­ние вы­ра­же­ния:  дробь: чис­ли­тель: 3 синус в квад­ра­те 88 гра­ду­сов, зна­ме­на­тель: синус в квад­ра­те 11 гра­ду­сов умно­жить на синус в квад­ра­те 46 гра­ду­сов умно­жить на синус в квад­ра­те 68 гра­ду­сов умно­жить на синус в квад­ра­те 79 гра­ду­сов конец дроби .

27.  
i

Най­ди­те (в гра­ду­сах) сумму кор­ней урав­не­ния 6 синус 3x ко­си­нус 3x плюс 3 синус 6x ко­си­нус 10x=0 на про­ме­жут­ке (100°; 210°).

28.  
i

Най­ди­те про­из­ве­де­ние наи­мень­ше­го и наи­боль­ше­го целых ре­ше­ний не­ра­вен­ства |12 плюс 4x минус x в квад­ра­те | плюс 3 мень­ше 3 умно­жить на |6 минус x| плюс |x плюс 2|.

29.  
i

Пусть A= левая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию 2 19 плюс ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 19 пра­вая круг­лая скоб­ка 2 минус 2} пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка 0,5 пра­вая круг­лая скоб­ка умно­жить на левая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 9,5 пра­вая круг­лая скоб­ка 19 умно­жить на ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 2 пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка 0,5 пра­вая круг­лая скоб­ка 19 минус ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 2 пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка 1,5 пра­вая круг­лая скоб­ка 19 пра­вая круг­лая скоб­ка плюс 4 ло­га­рифм по ос­но­ва­нию 4 в квад­ра­те 19.

Най­ди­те зна­че­ние вы­ра­же­ния 2A.

30.  
i

Най­ди­те сумму всех трех­знач­ных чисел, ко­то­рые при де­ле­нии на 4 дают в остат­ке 3, а при де­ле­нии на 6 и на 9 дают в остат­ке 1.